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Summary  
 

The Atlantic salmon is one of the most economically important species in modern-day aquaculture. For this 
reason, a lot of effort has been put into implementation and improvement of breeding programs for this 
species, achieving vast genetic process in a considerably short period of time. Improvements in sequencing 
technologies have facilitated the use of genomic selection, integrating molecular genetic information and 
increasing selection response for key production traits of polygenic architecture. However, implementation 
of genomic selection requires large, densely genotyped populations, which can prove challenging, 
especially considering aquatic populations. Genotype imputation therefore, constitutes a cost-efficient 
method that amplifies the genotyping density of large populations, allowing them to be analyzed in low-
density and cost genotyping platforms. Although at the time of the first Atlantic salmon genome assembly 
leading sequencing and bioinformatic methods were applied to assemble the genome reference, the high 
genomic complexity of the species severely impacted the quality of the produced assembly. Assembly errors 
are expected to primarily affect genotyping quality and consequently all downstream analyses. The recent 
release of a new genome assembly for Atlantic salmon (NCBI GeneBank reference: GCA_905237065.2), 
constructed using long-read sequencing technologies, is expected to improve our understanding of salmon 
genetics and genomics as well as contribute to the application of higher-quality genomic data in salmon 
breeding. In this study we explored the improvements achieved in the new genome assembly, as these 
were realized through a genotype imputation analysis using a small sample of immediate relatives. We 
report large structural changes occurring in the new genome assembly and discuss their impact on 
imputation accuracy as well as on currently available genotyping platforms. We also provide potential 
considerations regarding local heterogeneity of imputation accuracy in relationship to salmon’s high 
genomic complexity as well as occurrence of structural variation elements. Finally, we discuss possible 
strengths and weaknesses of different imputation approaches relative to our experimental sample 
limitations.  
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Introduction 
 

Responding to the ever-increasing world demand for food, aquaculture has dramatically improved in 
productivity and intensity over the past decades (Ross D. Houston, 2017; R. D. Houston & Macqueen, 
2019). The increase in production came as a result of selectively breeding individuals for traits of economic 
interest. Traditionally, improvement of such traits was achieved by estimating the genetic contribution of the 
breeding candidates through pedigree information and phenotypic expression records (Ross D. Houston, 
2017; T. Meuwissen et al., 2016) 

Dawning of the genomics era facilitated Genome Wide Association studies (GWAS) to identify and integrate 
molecular genetic information into animal breeding, increasing selection response. Genetic loci highly 
associated with traits of interest (QTL) were first identified through GWAS. Analysis of these QTL provided 
insight about the genetic makeup of key production traits, narrowing down genetic and environmental 
variance and ultimately increasing precision of selection (T. Meuwissen et al., 2016). The method under 
which the effects of such variants were considered in the estimation of breeding values (EBV) was termed 
Marker Assisted Selection (MAS). Applying MAS led to improvements in aquaculture, especially regarding 
disease control (Gonen et al., 2015; Moen et al., 2009; Moen et al., 2015). Although powerful as a method, 
application of MAS came with certain limitations since expression of most key-production traits is not the 
result of a single yet powerful QTL but rather the cumulative effect of several loci of small contribution each. 
Due this polygenic architecture, a large portion of genetic variation for important traits could not be explained 
by methods such as MAS (T. Meuwissen et al., 2016). 

Supported by the advances in sequencing technologies, the discovery and utilization of a large number of 
SNP markers facilitated the establishment of the Genomic Selection (GS) theory in 2001 (T. H. Meuwissen 
et al., 2001). GS had a drastic impact in aquaculture, leading to the re-design of thus far applied breeding 
schemes (Fernandez et al., 2014; Meuwissen et al., 2001; Tsai, Hamilton, Guy, et al., 2015; Tsai, Hamilton, 
Tinch, et al., 2015). Due to its several benefits, the GS method was widely adopted and has been routinely 
implemented since. To accurately estimate the genetic merit of selection candidates, GS depends on a 
densely genotyped reference population with phenotypic records on a trait of interest. Using the information 
obtained from the reference population, the phenotypic effects of each genotype are estimated. These 
marker effects are then applied on a population of genotyped only selection candidates and genomic 
predictions are established, evaluating the candidates’ breeding potential (GEBV). Intuitively, precision of 
GS relies heavily upon reference population size and genotyping density of the reference individuals, but 
also on the genotyping density of the selection-candidates (Calus et al., 2014).  

Improvement in sequencing technologies resulted in increasing accessibility to genotype information. 
However, genotyping large populations using high-density platforms is still very costly and practically 
challenging, especially considering the fecundity and family size of aquatic species such as salmon. For 
this reason, the necessity for establishment of cost-efficient ways to extract a maximum of genomic 
information from big cohorts, becomes evident. One solution is to use genotype imputation - a cheap and 
efficient strategy to estimate unknown genotype information and increase genotyping density in large 
populations (Kijas et al., 2017; Tsai et al., 2017; Tsairidou et al., 2020). 

 

Genotype imputation 
 
Genotype imputation is a key aspect of modern breeding programs. It is an in-silico genotype inference 
method that provides access to genomic information of large cohorts using a smaller, densely genotyped 
reference population (Whalen et al., 2018). The basic framework behind imputation is the exploitation of 
linkage disequilibrium (LD) between markers and/or family information. Implementation of imputation differs 
depending on the assumption of relatedness between the reference and target populations. Family-based 
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imputation is mainly applied in animal population studies due to the strong family structure observed in 
commercially bred populations and uses linkage and Mendelian segregation rules as well as pedigree 
information to infer missing genotypes (Sargolzaei et al., 2014). On the other hand, population-based 
imputation methods consider all participating individuals to be unrelated and thus use probabilistic methods 
to model haplotype frequency between genotyped markers (Browning et al., 2018; Loh et al., 2016). In 
addition, there are hybrid methods that perform imputation by combining population and family based 
approaches (Hickey et al., 2011; Sargolzaei et al., 2014) 

Result of genotype imputation is the inference of unknown genotypes in the genomes of the target 
individuals. In this manner, genotype imputation is used as a “stepping-stone” to provide sparsely genotyped 
populations with the high -even sequence level- genotype resolution required to carry out a series of 
downstream analyses, such as association studies and genomic selection.  

 

Imputation approaches 

1. Family based imputation using FImpute 
 
Family based imputation methods assume the presence of relationships between individuals in the 
reference and target populations. Under this assumption, identical by descent (IBD) haplotype segments 
(haplotype segments inherited from a common ancestor) can be identified within populations (Y. Li et al., 
2009). Depending on the level of relationship, longer haplotype segments are shared between closely 
related individuals, while considerably shorter IBD haplotype segments are shared between more distant 
relatives (Sargolzaei et al., 2014). In the context of genotype imputation, relatedness can be defined through 
pedigree information input or by phasing all individuals’ genotypes (i.e. estimating haplotypes) followed by 
identification of haplotype similarities. In 2008, Kong et al. introduced the heuristic method of Long-Range 
Phasing (LRP), establishing the concept of surrogate parents (Kong et al., 2008). Using related or 
“seemingly unrelated” individuals, LRP allowed the construction of relationships through pooling of IBD 
segments identified within populations. By constructing relationships, the LRP method allowed family-based 
imputation to be applied even when pedigree input was either ambiguous or incomplete. One commonly 
used imputation software that infers missing genotypes by utilizing the LRP method in addition to pedigree 
information is FImpute (Sargolzaei et al., 2014). 

FImpute first uses the pedigree information to identify haplotype segments (haplotype discovery) shared 
between related individuals in the target and reference populations. It then infers missing alleles between 
these haplotypes, taking into consideration potential crossover events. Iterating and rotating haplotype 
discovery between parents and offspring, haplotype information is gathered and used to construct a “ 
haplotype library”. After all reported pedigree relationships have been analyzed, FImpute proceeds to 
search for potential relationships between individuals without pedigree information (parentage discovery). 
To do that, the entire genome is assessed; A progressively decreasing overlapping sliding window is used 
in chromosomal order to detect linkage across haplotypes, based on the theory that closer relatives share 
longer and less frequently observed haplotype segments than more distantly related individuals. The 
haplotype library is constantly updated throughout the process and is finally used to estimate haplotype 
frequencies. Using the estimated frequencies, the remaining missing alleles are finally inferred. As a result, 
FImpute can accommodate for both the presence and absence of pedigree information, which is of utmost 
importance in the animal breeding and aquaculture industry. In instances where pedigree information is not 
provided, identification of extant relationships between target and reference individuals can also be 
reconstructed using parentage assignment methods (Grashei et al., 2018; Vandeputte & Haffray, 2014).   
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2. Population based imputation using Beagle 
 
Mainly targeted at human studies, population-based imputation approaches assume that the reference and 
target populations consist of either very distantly or even unrelated individuals. Population-based methods 
exploit the non-random association (LD) between alleles of individual markers that reside in close proximity. 
Based on exploitation of LD between markers, fine-scale recombination maps are highly recommended in 
order to increase inference accuracy. To model haplotype frequencies, population-based methods operate 
under the main framework of the Hidden Markov Model (HMM), as this model was proposed by Li and 
Stephens (Li & Stephens, 2003; Sargolzaei et al., 2014; Whalen et al., 2018). The way the HMM model is 
implemented however, greatly varies across different imputation algorithms (S. R. Browning & Browning, 
2011). One of the most commonly used population-based imputation software is Beagle (B. L. Browning et 
al., 2018). Beagle performs haplotype phasing and genotype imputation in two separate steps. A brief 
description of the two steps in Beagle is provided here.  

At its first step, haplotype phasing, Beagle induces a localized haplotype cluster model to define the 
haplotypes constituting the target and reference population individuals (S. R. Browning & Browning, 2007). 
The haplotype cluster model can be represented as a leveled acyclic graph consisting of several nodes and 
edges. The graph begins as a single -root- node and ends at a single -terminal- node including several 
nodes in-between the root and terminal nodes; all in-between nodes are sectioned in levels. Considering a 
sample of haplotypes, each level of the graph denotes a marker for which the haplotypes are genotyped. 
The nodes included within each level represent the alleles observed in a given genotyped marker. Moving 
through levels, nodes split and merge depending on the alleles observed in each marker, while edges 
(clusters) connect consecutive nodes, estimating the predictive likelihood of observing specific 
combinations of genotyped alleles, i.e. haplotypes, in the sample. After assessing each genotyped marker 
of the haplotype sample, the model reaches the terminal node, completing the acyclic model. Under this 
model, each haplotype in a given sample can be visualized as an individual path from the root till the terminal 
node of the graph, passing through one node per level. The haplotype cluster model can thus be considered 
as a special class of HMM (N. Li & Stephens, 2003). In the case of Beagle, the local haplotype cluster graph 
is extended to a diploid form in order to assess the unphased genotypes of individuals. The phasing step 
iterates, sampling and evaluating genotypes given the haplotype cluster model and the sampled population. 
The last iteration outputs the most-likely pair of haplotypes for each genotyped individual, conditional to the 
model and the individuals’ genotype (S. R. Browning & Browning, 2007).  

The second step of Beagle uses the already phased populations to perform genotype imputation through 
the implementation of an additional HMM model (B. L. Browning et al., 2018). To impute the missing 
genotypes, Beagle uses the pre-phased information to first concatenate tightly linked markers (0.005 cM) 
of target haplotypes and through the HMM estimates haplotype probabilities. Then, the algorithm creates 
haplotype “mosaics” (composite haplotypes) of the reference population, based on segmental identity 
between the reference and target population haplotypes’ alleles (IBS). Long IBS segments sharing identity 
between target and reference individuals are considered to contain at least one segment of identical alleles 
due to segregation (IBD). Composing reference haplotypes that conclude the target population constitutes 
an effective way to reduce the HMM state space and increase computational speed (B. L. Browning et al., 
2018). Finally, Beagle uses linear extrapolation in the HMM model to impute markers in the target population 
according to the reference (B. L. Browning & Browning, 2016).  

Although initially designed for humans, the population-based approach was eventually introduced into 
animal breeding and aquaculture as the best-fitting option for genotype imputation of unrelated individuals 
or for instances of unavailable, incomplete or unreliable pedigree information (Bolormaa et al., 2019). 

Quantification of imputation accuracy 
 
The success and precision of all analyses following imputation relies heavily upon the accuracy to which 
the ungenotyped information is inferred in populations. For that reason, evaluation of imputation accuracy 
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is of utmost importance. Genotype imputation can be assessed through different perspectives (marker-wise 
or individual-wise accuracy) and  different metrics, depending on the availability of genotype information as 
well as the objective of the imputation analysis (Calus et al., 2014). Most commonly used metrics for 
imputation accuracy assessment are concordance, Imputation Quality Score (IQS) and squared correlation 
(r2) between the imputed and true genotypes.  

Concordance is among the simplest measures of imputation accuracy assessment. This metric estimates 
the rate of correctly imputed genotypes relative to the total genotypes inferred in a given marker. Although 
the output of concordance can prove valuable, estimation of this metric heavily relies on allele frequency 
(Calus et al., 2014). Due to this dependency, concordance results tend to be inflated for markers with low 
Minor Allele Frequency (MAF) as the metric does not account for the possibility of correct inference of the 
minor allele due to chance. Therefore concordance is considered as a useful yet quite unreliable measure 
of imputation accuracy (Rowan et al., 2019). Although concordance can prove relatively inaccurate, its 
implementation into more sophisticated methods can increase reliability of accuracy assessment (P. Lin et 
al., 2010).  

Imputation Quality Score (IQS) is another often used metric of imputation accuracy (P. Lin et al., 2010). IQS 
estimation utilizes concordance but additionally adjusts imputation accuracy for the probability of correctly 
imputing genotypes by chance as well as for the non-random imputation errors that can occur when 
combining datasets from different genotyping platforms. In this manner, IQS proves to be a more robust 
metric for imputation accuracy against low MAF and therefore a more reliable accuracy assessment 
approach.  

The squared correlation (r2) between imputed and true genotypes is the most commonly used metric for 
assessing imputation accuracy. Unlike concordance, r2 is independent of allele frequencies and can 
therefore account for low MAF estimates (Calus et al., 2014). Ultimately, r2 is an estimate of how well the 
imputation analysis is to infer an alternative genotype when the minor allele for that genotype is less 
frequently -or even rarely- observed. Squared correlation is a powerful and highly reliable metric and for 
that reason it is often used as a quality threshold for imputed genotype information prior to downstream 
analyses (Yoshida & Yáñez, 2021).  

 

Genotype imputation implications and weaknesses 
 

Mentioned previously, imputation delivers to study individuals the genotype resolution required for a series 
of analyses (Marchini & Howie, 2010). Among the biggest advantages of the method is that the increase in 
genotype density is achieved in a significantly cost-efficient manner in comparison to investment in densely 
genotyping individuals, thus allowing larger cohorts to participate into studies. One of the most valuable 
uses of genotype imputation has been the combination of data from multiple studies that have used different 
genotyping platforms. Data are collected and combined in order to increase the testing population sample 
size and density, improving resolution of putative QTL and thus providing substantially more power in 
analyses such as association testing (Bernardes et al., 2019; Lin et al., 2010). GWAS analyses are used in 
order to identify the variant(s) affecting – or in association with - complex traits of economic and functional 
importance. To reliably identify causative variants, GWAS requires large number of meticulously 
phenotyped and genotyped individuals. In this manner, imputation has been extensively used to provide the 
high -or even whole genome sequence- density required for such analyses and increase the probability of 
defining rare markers associated with traits of interest (Bernardes et al., 2019; Tsai et al., 2015).  

Genomic selection (GS) is another field benefitted from genotype imputation. Explained previously, GS 
heavily relies on genotyping density and population size to accurately estimate the effects for marker 
genotypes in the reference population and assess the genetic merit of selection candidates. Due to the 
family structure and size of breeding populations however, genotyping large cohorts using high density 
platforms can prove challenging (Tsairidou et al., 2020). Genotype imputation can therefore be used to 
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amplify the desirable genotyping density of animals typed using considerably low density -and consequently 
cost- genotyping panels.   

There is a number of factors that can affect the accuracy and consequent impact of imputation. Most of 
these factors are related to characteristics of the reference population: size, genotyping density and 
composition. Discussed among accuracy quantification metrics, low MAF can have a negative impact on 
imputation accuracy. This is often attributed to sampling errors and software bias as markers with low MAF 
tend to be imputed according to the reference, regardless of their true genotype (Shi et al., 2018). To limit 
the negative impact of very low MAF on inference accuracy, appropriate quality control (QC) filtering is 
usually applied prior to the imputation process (S. Lin & Zhao, 2010). 

Regarding the reference population, size and composition play a very important role primarily on genotype 
imputation and consequently in all analyses utilizing the inferred information. When performing family-based 
imputation in large cohorts, the existence of immediate or close relatives defines the rate of accuracy, while 
addition of a pedigree file can significantly enhance imputation performance (Sargolzaei et al., 2014). When 
closely related animals are not available, imputation accuracy will rely on the size of the reference population 
as well as the level of relationships between animals to estimate the LD between markers and correctly 
infer genotypes. When the reference population is closely related to the target individuals however, size of 
the reference population has a smaller effect (Calus et al., 2014). Conversely, the degree of relatedness 
loses impact with increasing genotyping density, as increasing the genotyping information intuitively 
improves haplotype resolution (Sargolzaei et al., 2014).  

Composition of the reference genotypes is equally important; composition includes density and distribution 
of the markers on the genotyping panel. The density of the reference panel – and consequent SNP coverage 
of the population’s genome - defines the resolution to which target individuals are analyzed. Lower array 
densities are not as able to provide reliable information regarding rare variants or variants in weaker LD 
with the genotyped markers (Bolormaa et al., 2019). Adding to that, the markers’ distribution on the 
genotyping array is directly associated with genotyping coverage and ultimately accuracy of imputation, as 
LD decreases with increased distance between genotyped markers (Kijas et al., 2017). Finally, genotyping 
and mapping errors stemming from wrongly called genotypes and false mapping of genotyping markers in 
the genome reference, additionally leads to poor imputation results (van den Berg et al., 2019). False 
annotation of markers due to assembly errors in the genome reference can lead to loss of LD and decrease 
of imputation power. Results of this are less informative association analyses and compromised results 
during downstream analyses. As genotyping array markers are annotated according to reference genome 
assemblies, occurrence of such errors highlights the importance of improving the sequencing and assembly 
methods to yield higher quality and accuracy.  

 

Reference genome and sequencing technologies 
 

Over the past two decades, sequencing technologies have made vast progress in terms of throughput and 
efficiency (Ghosh et al., 2018; Goodwin et al., 2016; Shendure et al., 2017). Massively parallel -next 
generation- sequencing (NGS) enabled rapid and cheap DNA sequencing (Pareek et al., 2011). Along with 
advances in bioinformatic methods, NGS revolutionized our ability of de novo sequencing and assembly as 
well as re-sequencing of genomes, with large implications in animal breeding and aquaculture  (Ghosh et 
al., 2018; Lien et al., 2016; Robledo et al., 2018; You et al., 2020). Cheap and fast sequencing allowed for 
the efficient discovery of a large number of single nucleotide polymorphisms (SNP) and construction of high 
resolution linkage maps (Gonen et al., 2014) which made it possible to design high density SNP genotyping 
arrays, used for powerful GWAS studies. (Houston et al., 2014; Yanez et al., 2016)  

A major limitation of next-generation sequencing methods (from now on referred to as 2nd generation 
sequencing methods) however, is the relatively short length of the sequences this technology produces. 
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Short sequence lengths impact genome assembly contiguity, especially for genomic regions containing 
highly repetitive content as well as for genomes characterized by high complexity. The latter instance can 
be particularly encountered in species that have experienced a relatively recent Whole Genome Duplication 
(WGD) (Robledo et al., 2018; You et al., 2020).  Consequently, genomic regions with high repeat content, 
structural variation occurring between haplotypes or with duplicated copies in several places in the genome, 
were often erroneously assembled (Bickhart et al., 2017; Lien et al., 2016).  

To overcome the limitations of 2nd generation sequencing methods, third generation sequencing technology 
has been developed (Bickhart et al., 2017; Sedlazeck et al., 2018). Sequence reads produced by these 
instruments can vary from 1 Kbp up to even 1 Mbp, drastically improving the contiguity of genome 
assemblies (Goodwin et al., 2016; Sedlazeck et al., 2018). However, these longer reads have also been 
characterized by prohibitive cost as well as increased sequencing error rates, due to low sequencing 
coverage and also homopolymer tracts (Kraft & Kurth, 2020; Shafin et al., 2020). Since the encountered 
sequencing errors are randomly distributed, different solutions have been developed to minimize the 
negative impact; both in terms of computational and sequencing technology (Sedlazeck et al., 2018). 
Presently, the two major 3rd generation sequencing technologies on the market have read base accuracy 
>95% and assembly base quality (provided that the sequencing coverage is satisfactory) that produces 
genome assemblies with error rates comparable to the 2nd generation genome assemblies (Jain et al., 2016; 
Roberts et al., 2013). 

 

The Atlantic salmon 
 
Atlantic salmon (Salmo salar L.), hereby referred to as salmon, is one of the most economically and 
biologically important species of modern-day aquaculture (R. D. Houston & Macqueen, 2019). In addition, 
salmon is in the scientific forefront when it comes to implementing breeding programs and biotechnological 
tools such as marker assisted selection and more recently genomic selection (Gjedrem & Rye, 2018; Gonen 
et al., 2014; Ross D. Houston, 2017; R. D. Houston & Macqueen, 2019). 

In 2016, the first ever chromosome level genome assembly for Atlantic salmon was published (NCBI 
GeneBank reference: GCA_000233375.4) (Lien et al., 2016). At the time of assembly leading sequencing 
and computational methods were employed, combining longer (600bp) sanger sequencing reads with short 
(150bp) 2nd generation sequencing reads. As a result, the assembled reference genome of salmon 
consisted of more than 300,000 pieces. Consequent to the high fragmentation of the sequenced genome, 
certain portion of the sequence was not able to be assigned to a chromosome (Lien et al., 2016), while 
regions harboring duplication and repeat elements are believed to be at high risk of being absent from the 
genome assembly or falsely positioned. One of the largest sources for genome assembly errors are related 
to the whole genome duplication (WGD) event the Salmonidae family underwent 80-100 Mya (Lien et al., 
2016; Robertson et al., 2017). Although this event is old and most duplicated chromosomal regions from 
this event are distinctly different today (85-90% sequence similarity), almost 25% of the salmonid genome 
has experienced delayed and incomplete rediploidization. Such genomic segments are referred to as 
regions of lineage specific ohnolog resolution (LORe) (Robertson et al., 2017). As LORe regions share 
much higher sequence similarity across duplicated segments compared to the genome average, they have 
been very challenging to assemble using short read sequencing technologies. 

To improve this salmon genome assembly, particularly in the LORe genomic regions, a new genome 
assembly for Atlantic salmon was constructed using Oxford Nanopore long-read sequencing technologies 
(NCBI GeneBank accession GCA_905237065.2). This genome assembly is expected to provide new and 
exciting opportunities, further improving our understanding of salmon genetics and genomics. In addition, 
the new genome assembly is anticipated to help make a significant leap in the application of genomic data 
in salmon breeding.  
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Aims and objectives 
The main objective of this study was to explore the features and improvements of the newly released Atlantic 
salmon genome assembly, through the scope of genotype imputation, an analysis of routine application and 
high significance in modern aquaculture. This study is organized as follows. First, we carry out an imputation 
software comparison to define the best performing imputation strategy when a considerably small sample 
of immediate relatives is only available (parents-offspring). Then we perform genotype imputation using the 
current and recently released genome assembly versions (referred to as ‘old’ and ‘new’, respectively) to 
investigate the features of the new assembly, as these are reflected on genotype imputation accuracy. 
Finally we examine the impact of imputation analysis parameters (reference population size, genotyping 
density and filtering quality) on imputation accuracy, given the new genome assembly enhancements. 
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Methods  
 

Animals and SNP genotyping data  
 
 No animal experiments were conducted in this study, therefore we did not deal with ethical consideration 
requirements during the conduction of the following analyses. For all conducted analyses, genotype 
information from 1,310 Atlantic salmon individuals was provided by the aquaculture company AquaGen AS. 
The cohort consisted of fish from the breeding nucleus reared between 1998 and 2012. No pedigree 
information was provided prior to the analysis. 

All individuals have been genotyped using a proprietary xHD Affymetrix Axiom array (~930.000 SNP 
markers). This array is hereafter referred to as high-density SNP (HighD-SNP) panel. In addition, a subset 
of the study cohort, 226 fish reared in the year class of 2008, were genotyped with the proprietary 70kv1 
Affymetrix Axiom array (~70,000 SNP markers). This array is hereafter referred to as low-density SNP 
(LowD-SNP) panel.  

 

Genome assemblies 
 
 We performed genotype imputation using two different genome assemblies referred to as the ‘old’ and 
‘new’ assembly. The old assembly (Lien et al., 2016), was generated by a combination of sanger- and 
Illumina short read sequencing and scaffolded using linkage information (NCBI GeneBank accession 
GCF_000233375.1). This assembly has a size of 2.61 Gbp and consists of 368,060 contigs. The new 
assembly (NCBI GeneBank accession GCA_905237065.2) is based on Oxford Nanopore long read 
sequencing technology (Jain et al., 2016) and is scaffolded using a combination of linkage information and 
HiC-data. This assembly has a size of 2.76 Gbp and consists of 4,000 contigs. The new assembly therefore 
has a 90-fold improvement in assembly contiguity and is expected to contain less assembly errors, therefore 
representing a significantly improved model for the Atlantic salmon genome. A detailed comparison of the 
assembly quality per se was out of scope for this thesis.  

 

Reposition of SNPs on the new genome assembly 
 
Because of an increase in chromosome anchored genome sequence and intragenomic reordering of 
sequence in the new genome assembly, we had to re-assign genomic positions for the SNP markers 
present on the genotyping arrays that we examined. To achieve this, we extracted the genomic sequence 
flanking the SNPs (35 bp on each side) and mapped these SNP-containing sequences to the new genome 
using the Burrows – Wheeler Aligner (BWA, version 0.7.17)(Li, 2013). For each sequence, BWA reports the 
mapping coordinates in the genome along with a summary statistics score (MAPQ) that reflects the overall 
mapping quality of the sequence. MAPQ has a range between 0 and 37, indicating the probability that a 
given query sequence is falsely mapped. This probability can be calculated as: 

𝑃 = 10(− 
ⅈ

10
)
, 

where i represents the MAPQ quality score. A mapping quality of 37 translates to P=0.0001 or a 0.01 percent 
chance that the examined sequence has been incorrectly aligned on the genome reference. All analyses 
performed in this study used only markers mapped with MAPQ score equal to 37. Chromosome number, 
physical position coordinates and mapping quality information for these markers was used to assign 
genomic SNP positions in the new assembly for the tested genotype arrays. A software pipeline for SNP-
array marker re-mapping is available from AquaGen AS upon request. BWA output filtering and array update 



13 
 

were performed using the software PLINK v1.9 ( function --update-chr) and v2.0 (function ---update-map), 
in a Linux cluster environment (Chang et al., 2015; Purcell et al., 2007).  

 

Data quality control (QC) filtering 

Quality filtering 
 
Quality control (QC) filtering was performed using PLINK v1.9 and v2.0 (Chang et al., 2015; Purcell et al., 
2007). We used PLINK v1.9 to remove markers having the same physical position, reference and alternative 
alleles, while the rest of quality filtering was carried out using PLINK v2.0. The reason behind using two 
different software versions of the same software is because between earlier (v1.9) and later (v2.0) 
developed versions, utility of certain analysis tools has been modified. Using PLINK v2.0 (Chang et al., 
2015) we identified and discarded variants with more than 2% missing genotypes and minor allele frequency 
less than 2.5%. Individuals with more than 10% missing genotypes were removed, as well as variants 
deviating from the Hardy Weinberg equilibrium (HWE) with a p-value < 10-10. Variants with duplicated 
physical positions were identified using the function duplicated() in R (R core team)  and were discarded 
through the function --exclude in PLINK v2.0. 

 

Matching markers across SNP panels and chromosome strands 
 
For analyses utilizing multiple SNP panels, it is important that all genotype information is assessed 
according to the same reference. For this reason, SNP markers in the target panel that are not present in 
the reference must be discarded. In addition, alleles of common markers between SNP panels have to be 
called from the same chromosome strand. To fulfill these requirements, we employed the strand-alignment 
software conform-gt (version 24May16.cee.jar; Browning, 2016) in order to : 

a) Identify the common markers between SNP panels and discard markers found only on the 
target density SNP panel 

b) Identify the chromosome strand for markers commonly present between genotyping panels 
and discard markers whose strand cannot be defined 

c) Match reference and alternative alleles for the same markers between reference and target 
density SNP panels   

 We assigned the alleles of markers in the LowD-SNP panel using the HighD-SNP panel as reference for 
the two genome assemblies and identified matching markers based on their mapping position in the two 
panels. As conform-gt examines each chromosome individually, we used the BCFtools genomic analysis 
toolkit from the SAMtools software suite (Li, 2011; Li et al., 2009) to merge all chromosome output into a 
single file. 

Finally, in order to compare imputation accuracy between different genome assemblies, we examined only 
common SNP markers between the LowD- and HighD-SNP panels that were assigned to a unique genome 
location in both versions of the Atlantic salmon genome assembly (i.e. only a single match in the genome 
in the BWA sequence mapping). These common variants were first identified between assembly SNP 
panels using the R function inner_join() and then retained using the function --extract in PLINK v2.0.  

Quality control of genomic relationships 
  

 The FImpute algorithm tested in this thesis (Sargolzaei et al., 2014), can utilize pedigree information to 
accurately detect shared haplotype segments between more or less related individuals. Since pedigree 
information for the study individuals was not available a priori, pedigree relationships were re-constructed 
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based on parentage assignment methods using genomic relationship likelihoods (GRL) (Grashei et al., 
2018). GRL can be obtained from AquaGen AS upon request. In our study, the candidate parents consisted 
of 204 fish from the 2005 year class while the putative offspring group included 216 fish from the 2008 year-
class.  

 

Genotype imputation 

Evaluation of SNP genotype imputation tools for genome assembly comparisons 
 
We performed an imputation experiment to assess the performance of two routinely used imputation 
software, namely FImpute v3 (Sargolzaei et al., 2014) and Beagle v5.2 (B. L. Browning et al., 2018; S. R. 
Browning & Browning, 2007). The two imputation algorithms are based on different theoretical approaches 
to perform haplotype identification (phasing) and infer missing genotypes. Details about how these 
imputation algorithms work are outlined in the introduction section “Imputation approaches”. The software 
comparison was carried out by imputing 450,368 genotypes in 195 individuals (from LowD-SNP panel up 
to a HighD-SNP panel), using their respective parents (90) genotyped on the HighD-SNP panel as the 
reference population.  

The two imputation algorithms required different curation of input data. For Beagle we used the Variant Call 
Format (.vcf) output file, produced by PLINK v2.0 during SNP QC filtering. On the other hand, for FImpute 
the software PLINK v2.0 was used to first convert the SNP QC output into R-acceptable allelic dosage 
format (.traw). A custom R script was then applied to adjust the required information into format compatible 
with FImpute. FImpute analysis was executed using the software’s default parameters (Sargolzaei et al., 
2014). For Beagle, some default parameters required modification due to density and mapping coordinates 
of the LowD-panel variants. Window size was set to 39.0 cM and overlap to 5.0 cM. In addition, effective 
population size for the analysis was adjusted to ne=200. Although Beagle does not utilize pedigree 
information, inclusion of a recombination map is highly recommended. In this study however, a fine-scale 
recombination map of Atlantic salmon was not provided so, analyses were performed using the default 
recombination parameters (1cM/ 1Mb). Both imputation software analyses were executed using parallel 
processing and 8 CPU units in a Linux cluster environment. Imputation performance of the tested software 
was assessed in terms of imputation accuracy and execution run-time (minutes to complete the analysis). 
The imputation results from the best performing imputation tool were used for comparative analyses 
between the old and new genome assemblies.   

 

Genotype imputation using a large reference population and cross validation  
  

An alternative imputation strategy to using individuals genotyped on separate SNP panels for the target and 
reference populations, is to use a large population genotyped on a single SNP panel and subset portions 
to construct the target population, irrespective of relationship between individuals. To evaluate this 
imputation approach we performed a 10-fold cross-validation (CV) analysis by iteratively looping through 
the following steps:  

(i) random subsampling without replacement of 10% of a large reference pool of individuals 
genotyped with the HighD-SNP chip  

(ii) down sampling of the SNP genotyping density for the subsampled individuals to construct the 
target population 

(iii) use of the reference and target populations to perform genotype imputation 

(iv) assessment of imputation accuracy by comparing the imputed with real genotypes for the 
subsampled individuals.  
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We performed two different CV analyses using the HighD-SNP panel with SNPs positioned in the 
new genome assembly. In the first analysis we down sampled SNP density according to the markers present 
in the LowD-SNP panel (62,106 markers), described in section “Animals and SNP genotyping data ”. For 
the second experiment we down sampled markers to match those included in a medium-density -relative to 
the HighD density- SNP panel (proprietary 220k Affymetrix Axiom array, 203,335 markers), thereby referred 
to as MediumD.  

A total of 1,293 individuals with genotype information on the HighD-SNP panel were included in the 
reference pool for the two CV analyses. Remapping of SNPs for the HighD-SNP panel followed the 
mapping-coordinates update steps described in section “Reposition of SNPs on the new genome 
assembly”. However, to test SNP panel quality and integrity, we applied more stringent QC restrains to the 
SNP data of the HighD-SNP panel. Ensuring that SNPs positioned in the new assembly were of highest 
mapping quality, only markers identified by the Affymetrix platform as reliable on their genotyping integrity 
were retained for the CV analyses (Affymetrix power tools, 2018). Additional quality control (QC) of SNP 
genotype data through PLINK 2.0 (Chang et al., 2015), removed markers with more than 1% missing 
genotypes, minor allele frequency below 0.5% as well as individuals with more than 5% of their genotypes 
missing. In addition, variants deviating from the Hardy Weinberg equilibrium with a p-value < 10-6 were also 
discarded. 

We generated ten independent subsamples for each CV analysis (i.e. 10-fold CV) of either 129 or 130 
individuals by random sampling without replacement using the sample() function in R. For each of the ten 
CV iterations, the remainder of the individuals (1,163 or 1,164) were used as the reference population. For 
each individual in each subsample we then down sampled genotypes retaining those present in the 
MediumD- and LowD-SNP panels (depending on CV analysis), using the function --extract in PLINK v2.0.  
Variants of the LowD- and MediumD- panels that were not present in the HighD panel, were automatically 
excluded by PLINK v2.0. Genotype imputation was performed using Beagle v5.2 (B. L. Browning et al., 
2018; S. R. Browning & Browning, 2007), with modified parameters and parallelized processing described 
in section “Evaluation of SNP genotype imputation tools”. 

 

Assessment of imputation accuracy 

Average imputation accuracy 
 
To assess imputation accuracy of single SNPs in the parent-offspring design, we compared the imputed 
and true genotypes for each marker by estimating rate of concordance (CR) and the square of Pearson’s 
correlation coefficient (r2). Concordance is a very useful measure of imputation accuracy, indicating the 
proportion of correctly imputed genotypes. However, described in introduction section “Quantification of 
imputation accuracy”, CR tends to overestimate imputation accuracy considering minor allele frequency 
(MAF). For that reason we additionally employed the squared correlation (r2) between true and imputed 
genotypes, a highly robust and consequently reliable imputation accuracy metric.  

In the case of the CV imputation experiments, we only used r2 and calculated accuracy by averaging 
the r2 estimate of each marker across all 10 CV replicates. 

 

Local genomic accuracy assessment 
To investigate differences in imputation performance between genomic regions we used a “rolling window” 
approach to compute mean imputation accuracy for SNPs in the old and new genome assemblies. Each 
window contained 100 SNP markers while consecutive windows overlapped by 50 SNP. In order to visualize 
the local genomic differences in imputation accuracy throughout chromosomes, the average r2 of each 
rolling window was plotted against the physical position of the first SNP included in each constructed 
window.   
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Results 
 

Data filtering  

Immediate relatives imputation design 
 
SNP quality (QC) filtering was performed on each SNP panel in the two genome assemblies, summarized 
in Table i. This resulted in 43,013 high quality SNPs on the LowD-SNP panel that were commonly found in 
both genome assemblies and were also included in the HighD-SNP panel. Filtering of the HighD-SNP panel 
resulted in 493,381 SNPs commonly found in the two genome assemblies.  

From a total of 1,310 animals passing the QC filtering criteria, 216 were candidate offspring genotyped on 
both LowD- with HighD-SNP panels. Of these candidates, 195 offspring (F2 generation) were able to be 
assigned to 90 parents (F1 generation). A total of 159 trios (offspring with two known parents) and 36 duos 
(offspring with one known parent) were identified, originating from crosses (families) between 51 sires and 
39 dams. On average, each dam was mother to 5 offspring and sires fathered 4 offspring, while family size 
varied between 1 and 10 individuals. The 21 individuals present in the target population dataset (LowD-
SNP panel) with no identified parents were discarded from the immediate relatives imputation experiments.  

 

Table i. Quality control (QC) filtering of  SNP markers for the LowD- (70kv1) and HighD-SNP (xHD) panels in the old and 
new genome assembly, respectively.  

Assembly version Genotyping Array Initial SNP on array Quality filtered SNP 
Common high-quality SNPs 

between assemblies 

Old LowD 62,583 54,355 
43,013 

New LowD 63,624 62,571 

Old HighD 723,656 532,270 
493,381 

New HighD 661,227 499,132 

 

Cross-validation (CV) imputation design 
 
QC filtering of the HighD-SNP panel resulted in a total of 1,293 animals with 409,019 high-quality SNPs 
assigned to the new genome assembly (Figure i). In total, the target populations contained genotype 
information from 183,582 and 44,201 SNP markers for the MediumD- and LowD-SNP panel density 
designs, respectively.  

 

Figure i. HighD-SNP panel update and quality filtering for the cross-validation analyses  

•Filter xHD array on 
Affymetrix marker quality

436,202 SNP

•Update markers mapped 
with high confidence on 

new assembly

412,372 SNP

•Discard duplicated markers 
(PLINK 1.9) and QC filter

411,702 SNP

•Remove markers with the 
same physical positions 

409,019 SNP
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Comparing imputation software  
 

Before comparing imputation accuracy between genome assemblies, we first tested two different imputation 
algorithms, namely FImpute v3 and Beagle v5.2 (B. L. Browning et al., 2018; Sargolzaei et al., 2014). For 
FImpute we provided pedigree information (see above section “Immediate relatives imputation design”) and 
employed a population and family imputation approach. Beagle being a purely population-based algorithm, 
did not require pedigree information. Imputation performance results are presented below (Table 1). 
Although the rate of concordance (CR) did not show big discrepancies across imputation algorithms 
(approx. 99% of all missing markers were imputed correctly), average imputation accuracy (r2) was 
significantly better (Wilcoxon signed rank test, p-value < 2.2e-16) for both assembly versions with Beagle 
(Table 1).  

 

Table 1  Software comparison between imputation algorithms FImpute v3 and Beagle v2.5. Software performance is 
assessed in terms of imputation accuracy (CR and r2) and computational cost (minutes to perform the analysis) 

 FImpute v3 (pedigree) Beagle v5.2 

Old assembly New assembly Old assembly New assembly 

Concordance (CR) 0.986 0.988 0.993 0.991 

Average accuracy (r2) 0.830 0.834 0.842 0.851 

Run time (mins) 3.58 4.02 8.07 7.83 

 

 

Figure 1 Local accuracy comparison between Beagle v5.2 (Black lines and points) and FImpute v3 (red lines and points) 
imputation software using the rolling window method in selected chromosomes. Genome-wide comparison is presented in 

figure S1 (supplementary material). 

Investigating the local imputation accuracy across chromosomes (Figure 1), the two software mostly 
performed poorly in the same genomic regions. Local imputation accuracy comparisons for all 
chromosomes can be found in Figure s1 of supplementary material, however they show similar trends as 
the example chromosomes highlighted in Figure 1. In genomic regions of poor average imputation accuracy 
(r2 < 0.50), Beagle performed worse than FImpute (e.g. Ssa11 and Ssa17 on Figure 1, Ssa25 on Figure 
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s1). Assessing computational efficiency of each software, Beagle was much slower than FImpute, requiring 
approximately twice the computational time (Table 1). Despite the slower processing time, Beagle only took 
~8 minutes to perform the analysis and yielded overall better imputation accuracy. We therefore chose 
Beagle v5.2 to perform all imputation analyses shown in this study.  

 

Comparing imputation accuracy between old and new genome assemblies 

Genome wide assembly comparison 
 
To compare the impact of an improved long-read reference genome assembly on imputation accuracy, we 
compared results of ten-fold genotype imputation (from ~43k to ~493k SNPs) using SNPs positioned on the 
new against the old genome assembly. Assessing concordance,  99% of  total genotypes were correctly 
imputed in both genome assemblies (Table 2). Overall average imputation accuracy -measured as r2- was 
relatively low for both assemblies; In comparison to the old however, average imputation accuracy using 
the new genome assembly was significantly higher (Table 2, Wilcoxon signed rank test, p-value < 2.2e-16). 
It is important to note that although the average r2 estimates were below 0.90 for both assemblies, majority 
of markers were imputed with an r2 value close to 1.0 (red and black dashed lines in Figure 2). Our results 
showed that using SNP positions placed on the new long-read genome assembly, resulted in small yet 
significant (p-value < 2.2e-16) improvement in imputation accuracy at the whole genome level. 

 

Table 2 Average imputation accuracy results ( estimated as concordance (CR) and squared correlation (r2)) for a ten-fold 
genotype imputation analysis using the old and new genome assemblies 

 Beagle v5.2 

Accuracy metric Old assembly New assembly 

Concordance (CR) 0.993 0.991 

Average accuracy (r2) (± st.dev) 0.842 (0.24) 0.851 (0.22) 

 

 

 

Figure 2 Histogram of r2 values for imputed markers in the new (left) and old (right) genome assembly. The black and red 
dashed lines on each plot represent the mean and median accuracy (r2) value, respectively 
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Local genomic differences in imputation accuracy between assemblies 
 
Although the genome-wide average imputation accuracy for the two assemblies did not show dramatic 
differences, it is still possible for the two assemblies to drastically differ across certain genomic regions. To 
investigate this possibility, we applied the rolling window approach and estimated the average r2 in  windows 
of 100 SNP width.  

Figure 3 shows the rolling window analysis for each of the two genome assemblies in selected 
chromosomes (see Figure s2 in supplementary material for all chromosomes). For majority of 
chromosomes, a general accuracy decrease was observed towards the ends of chromosomes (Figure s2), 
however there are also instances of drastic accuracy drop at the center of chromosomes, for example in 
SSa01, Ssa11 and Ssa18 (Figure s2). 

 
 

 

 

While most genomic regions performed similarly between the two genome assemblies, there are some 
striking accuracy differences observed between genomic regions. For example, in chromosomes Ssa06 
and Ssa08 (Figures 3 above and s2 in supplementary material) several hotspots of poor imputation 
accuracy seem to be “resolved” by the new assembly version. In addition, smaller but substantial 
improvements can also be observed across several chromosomal segments (see Ssa02, Ssa11 and Ssa16 
in Figure 3), aligning with the small improvement in average genome-wide imputation accuracy in the new 
assembly (Table 2). Only a few genomic regions show a large accuracy drop in the new assembly compared 
to the old version; for example on chromosome Ssa17 (Figure 3) as well as towards the ends of 
chromosomes Ssa15, Ssa18 and Ssa25 (Figure s2, supplementary material).  

 

Figure 3 Local imputation accuracy assessment of the old (blue) and new (red) genome assemblies using the rolling windows 
method in selected chromosomes. Each rolling window represents the average imputation performance of 100  SNP markers in 
chromosomal order. The two vertical lines indicate the physical length of each chromosome for the old (dashed line) and new 

(solid line) genome assemblies. A genome wide comparison is provided in Figure s2 of supplementary material. 
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Impact of duplicate similarity on imputation accuracy  
 
Based on the observed heterogeneity in local imputation accuracy between the two genome assemblies, 
we asked whether this could, at least partially, be attributed to the duplicated nature of the salmonid 
genome. Although most of the duplicated salmon chromosome segments started diverging 80-100 Mya, 
approximately 25% of the genome experienced delayed rediploidization (Lien et al., 2016; Robertson et al., 
2017). The segments that experienced delayed rediploidization, referred to as Lineage specific Ohnolog 
Resolution regions (LORe-regions), share very high sequence similarity between duplicated loci and thus 
tend to be very difficult to assemble correctly. These LORe regions are represented by red bands in Figure 
4. On the other hand, timely-diverging duplicated regions referred to as regions of Ancestral specific 
Ohnolog Resolution (AORe-regions), contain more distinct genomic sequence. AORe regions in the Atlantic 
salmon genome can be seen in Figure 4 as grey bands, respectively.  

We therefore hypothesized that regions 
with high duplicate sequence similarity 
(LORe regions) would undergo a much 
larger assembly improvement in the new 
genome assembly compared to AORe 
regions, reflecting this improvement as 
increase in imputation accuracy. The 
results, presented in the heatmap tracks 
a and b in Figure 5, show a strong 
association between accuracy decrease 
and genomic regions of high sequence 
similarity. In line with our hypothesis, for 
markers residing within the LORe 
regions (highlighted red bands in the 
center plots of Figures 4 and 5), 
imputation accuracy is considerably 
lower. Interestingly, this difference was 
more pronounced for the old genome 
assembly (track b), compared to the new 
assembly version (track a). In addition, 
low imputation accuracy can also be 
observed in small segments outside 
LORe regions and towards the ends of 
chromosome Ssa15 as well as in two 
central regions in chromosomes Ssa01 
and Ssa18 (Figure 5). For chromosome 
Ssa01, although accuracy in the old genome assembly shows a big local decrease in comparison to the 
rest the chromosome’s performance, no evidence of high sequence similarity has previously been identified 
for this region (Lien et al., 2016). This region is represented by a small gap at approximately 100*106 bp in 
chromosome Ssa01 of Figure 4. 

 
 

Figure 4 Circos plot (Krzywinski et al., 2009) of the salmonid genome showing the 
high duplicate sequence similarity regions  (LORe) as red ribbons connecting 

duplicate regions. In grey, the early diverged regions (AORe) are shown. (Lien et 
al., 2016; Robertson et al., 2017) 
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Figure 5 Circos plot (Krzywinski et al., 2009) showing the genome-wide imputation accuracy performance (rolling windows 
method) between the new (track a) and old (track b) genome assemblies. Heatmap tracks a and b range in colors from deep red 

to deep blue indicating the lowest and highest accuracy values (r2), respectively. Track c shows the physical span of each 
chromosome. In the center plot, imputed markers positioned in a different chromosome according to the new assembly (inter-

chromosome positioned) are presented as black lines connecting the exchanging chromosomes, while the previously identified 
LORe regions (Lien et al., 2016) are indicated as bright red bands. 

 

Impact of marker position rearrangement on imputation accuracy  
 
A main reason for the improved imputation accuracy in the new genome assembly is likely related to marker 
position rearrangements. Comparison of the imputed markers’ physical position between genome 
assemblies, shows differences regarding the physical span of chromosomes in the new assembly version. 
Chromosomes show physical extension ranging from 35Kb up to 27Mb (average length= 8.4Mb). Such 
differences can be observed between the tracks a and b in Figure 5 as well as in Figures 3 above and s2 
in supplementary material. Table s1 in supplementary material provides further details regarding the 
differences in chromosomal length between the two genome assemblies. 
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Although we expected virtually all SNPs to have a different physical position in the new genome assembly 
due to changes in genome length and intragenomic sequence reordering, 3,833 SNPs were assigned to a 
different chromosome in the new versus the old assembly. Seen in Figure 6, these inter-chromosomal 
exchanges had a drastic impact on imputation accuracy. The average imputation accuracy for inter-
chromosome repositioned markers’ performance increased from 0.269 in the old genome assembly to 0.674 
in the new assembly version. On the contrary, markers that were repositioned within the same chromosome 
showed only slight accuracy improvement between assemblies (0.006 increase in average accuracy in the 
new assembly, shown in Figure 6). Aligning to our anticipations, majority of inter-chromosomal rearranged 
markers were exchanged between LORe regions (2.864 markers, ~75% of total inter-chromosome 
repositions). These markers are shown as black lines in the central plot of Figure 5, connecting the 
chromosomes between which they were exchanged. On the other hand, inter-chromosome repositioned 
markers moving to AORe regions were substantially fewer (979 markers, 25% of total inter-chromosome 
repositions). Interesting inter-chromosomal exchanges between non-LORe regions constitute the genomic 
segment exchanged between chromosome pairs Ssa01 and Ssa18, as well as one smaller but very 
impactful exchange between chromosomes Ssa10 and Ssa17, shown in the center plot of Figure 5. Table 
s1 in supplementary material presents the number of inter-chromosome repositioned markers that were 
either removed from or introduced to each chromosome due to the new genome assembly rearrangements.  

 

 

Figure 6 Accuracy performance of imputed markers depending on their reposition in the new genome assembly. X axis 
defines the direction of repositioned markers while the number and mean imputation accuracy of markers included in each 

reposition class is defined at the top. Subplots a and b show the imputation accuracy of the repositioned markers 
according to their old and new mapping coordinates, respectively. The Imputation accuracy performance of markers 

repositioned in AORe and LORe regions is shown in green and blue colors, respectively.   

Further exploration of the LORe regions in the new genome assembly shows that less markers could be 
positioned in the high duplicate similarity regions compared to the old assembly version. In the old genome 
assembly 68,958 high quality markers resided within LORe regions, while in the new version these markers 
decreased to 63,114. Of total LORe region positioned markers, only 61,746 markers were commonly 
identified in both genome assemblies. 
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In addition, comparison of imputation performance between the old and new genome assemblies (heatmap 
tracks a and b in Figure 5) indicates that despite the overall improvement, the new genome assembly did 
not manage to completely resolve the low imputation accuracy across LORe regions. Regions of similarly 
low imputation accuracy between genome assemblies as well as small LORe segments of worse imputation 
performance in the new compared to the old genome assembly are seen in chromosomes Ssa02, Ssa17 
and Ssa26 in Figure 5.  

 

Structural variation and local imputation accuracy performance  
 
Structural variation (SV) describes a broad range of DNA sequence rearrangements (Freeman et al., 2006) 
that vary in form, complexity and impact (Bertolotti et al., 2020; Charlier et al., 2012; Ho et al., 2020; Schutz 
et al., 2016). Genotype imputation of such elements can be particularly challenging as structural variants 
do not occur uniformly within a given population, potentially interfering with accurate estimation of haplotype 
frequencies and consequently imputation accuracy. We therefore hypothesized that the local drops in 
imputation accuracy that we observed could be associated with occurrence of segregating structural 
variation in the Atlantic salmon breeding nucleus. To test this hypothesis, we obtained a dataset of 274,196 
structural variants identified by comparing long-read sequencing signals from 4 wild Norwegian salmon 
individuals against the new genome assembly (unpublished data shared by Kristina S. R. Stenløkk). A short 
description of this dataset content is provided in Table s2 and Figure s3 in supplementary material. 

We associated the genomic position of 397 large SV elements (length > 30Kbp) with the local imputation 
accuracy of the new assembly, as this was estimated by the rolling windows method. In total, 217 SV 
elements residing within the physical intervals of at least one rolling window were examined (Table 3). 
Figure 7 shows the occurrence of structural variation (red points) in association to local imputation accuracy, 
in selected chromosomes (genome-wide results are provided in Figure s4 of supplementary material). 

Overall, occurrence of structural variation was detected in regions of both low as well as high local 
imputation accuracy, e.g. regions in chromosomes Ssa01 and Ssa11 (Figure 7).However, majority of 
regions that show substantial decrease in local imputation accuracy overlap with structural variation signals, 
as seen on chromosomes Ssa01, Ssa02 and Ssa17 in Figure 7. These regions are mostly the same LORe 
regions that experienced inter-chromosomal repositioning of SNPs. What is more, regions with poor 
imputation accuracy overlapping with structural variation, appear to have much lower SNP density (longer 
genomic segments are required in order to capture the accuracy of 100 SNPs, shown in Figure 7).  

Since low SNP density can impact phasing and consequently imputation performance, this indicates that 
structural variation cannot serve as a reliable diagnostic for assessment of imputation performance per se. 
Rather, structural variants seem to be associated with lower accuracy indirectly -potentially through further 
underlying genomic features linked to the similarity between duplicated regions. 

 

Table 3 Length details for 217 identified structural variants with length above 30 Kbp that overlapped the physical intervals 
of at least one rolling window. Due to length restrictions, no insertions were retained for analysis. Details of all structural 

variants provided to this study are provided in Table s2 of supplementary material. 

SV element Number Min. length (bp) Max. length (bp) Average Length (bp) 

Duplications 49 30,706 1,849,972 30,706 

Deletions 131 30,132 2,620,731 30,132 

insertions - - - - 

inversions 37 30,137 411,146 30,137 
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Figure 7 Association of structural variation presence with local imputation accuracy using the rolling window approach in 
selected chromosomes. Rolling windows are shown in blue, as points across the line. Red points indicate the presence of 

at least one SV element residing within a rolling window. A genome wide comparison is provided in Figure s4 in 
supplementary material  

 

Genotype imputation accuracy using alternative experimental designs 
 
So far, we have shown that an improved genome assembly can increase imputation accuracy. However, 
the mean accuracy value in our study (r2=~0.85) is among the lower bound of imputation accuracy 
performance compared to other salmon related studies (Kijas et al., 2017; Tsairidou et al., 2020; Yoshida 
et al., 2018). We therefore asked whether our low imputation accuracy was the result of a sub-optimal 
imputation experiment design; using a small reference population (90 parents) while attempting to increase 
SNP density as much as 10-fold with relatively relaxed SNP quality filtering restrictions (see methods section 
“Quality filtering”). To test this hypothesis, we designed a new imputation accuracy experiment where we 
implemented more stringent SNP QC and tested both 10-fold (LowD to HighD) but also 2-fold (MediumD to 
HighD) genotype imputation. In addition, we used a larger reference population of randomly sampled 
individuals instead of a small sample of immediate relatives.  

Shown in Table 4, using a large reference population clearly improved imputation accuracy compared to 
our immediate relatives design (~0.93 against ~0.85, respectively). Imputing from the LowD or MediumD 
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SNP panels did not have a high impact on genome-wide imputation accuracy (0.002 difference in average 
r2 accuracy shown in Table 4) yet, there was large difference in local imputation performance; Imputation 
using a higher target SNP density (MediumD-to-HighD), performed markedly better in regions of poor local 
imputation accuracy (Figure 8). However, even when target population SNP density increased from ~44,000 
(LowD) to ~184,000 markers (MediumD), regions of poor imputation accuracy still yielded considerably low 
accuracy results (e.g. chromosomes Ssa17 and Ssa26 in Figure 8 and chromosomes Ssa02 and Ssa03 in 
Figure s5 of supplementary material). This observation highlights that currently available genotyping panels 
face a certain weakness regarding SNP density and distribution in the new genome assembly.   

 

Table 4 Imputation results for two cross-validation analyses, using a large population of randomly sampled individuals, 
stringent QC thresholds and two different target population SNP densities 

Cross validation analysis design Target SNP density Reference SNP density Mean accuracy (r2) (± st.dev) 

MediumD- to High-D SNP panel 183,582 SNP 409,019 SNP 0.928 (0.08) 

LowD- to High-D SNP panel 44,201 SNP 409,019 SNP 0.926 (0.08) 

 

 

 

Figure 8 Comparison of local imputation accuracy for two cross-validation analyses using stringent QC thresholds and two 
target population SNP densities in selected chromosomes. Local imputation accuracy for the LowD to HighD (in purple) 

and MediumD to HighD (in green) analyses was assessed using the rolling windows method. A genome wide comparison 
is provided in Figure s5 of supplementary material 

 

The CV analyses performing 10-fold and 2-fold genotype imputation yielded similar accuracy results 
(~0.93), indicating that target population SNP density is not the main reason behind the substantial accuracy 
discrepancy between the CV (r2=~0.93) and immediate relatives (r2=~0.85) experimental design. In the case 
of the CV analysis however, more stringent QC filtering was applied, described in methods section 
“Genotype imputation using a large reference population and cross validation”. As genotyping errors and 
poor quality SNP markers can severely affect imputation accuracy, we wanted to quantify the effect of 
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similarly stringent QC filtering in the immediate relatives design. For that reason, we further restricted QC 
filtering -as performed in the CV analyses- in the immediate relatives design (parents-offspring) and 
performed 10-fold genotype imputation (LowD to HighD). We then compared average accuracy results to 
those obtained from the CV analysis when imputing from the LowD to HighD panel densities. The average 
overall and local imputation accuracy results between the two experimental designs are presented in Table 
5 as well as Figures 9 (below) and s6 in supplementary material.  

Increasing QC stringency improved average imputation accuracy for the immediate relatives design but also 
decreased the standard deviation of imputed values as shown in Table 5. Similarly, local genomic regions 
with lower imputation accuracy also showed notable improvement in imputation performance (Figure 9). 
These observations indicate the impact of genotyping errors and inclusion of low quality genotyping data 
on imputation accuracy. Still though, average imputation accuracy of the immediate relatives analyses was 
substantially lower than the performance of CV analysis designs (r2=~0.89 versus r2=~0.93, respectively). 

 

Table 5. Comparison of imputation accuracy between two quality filtering restriction instances using the immediate relatives 
experimental design (parents-offspring).  

Quality control 
filtering 

Target  population 
density 

Reference population 
Density 

Average accuracy (r2)  
(± st. dev.) 

 

Strict QC 44,201 409,019 0.886 (0.18)  

Relaxed QC 43,013 493,381 0.851 (0.22)  

 

 

 

 

Figure 9 Comparison of imputation performance for the parents-offspring experimental design using stringent (red lines 
and points) and more relaxed (purple lines and points) QC thresholds, in selected chromosomes. Assessment of local 

imputation accuracy was performed with the rolling windows method. A genome wide comparison is provided in Figure s6 
in supplementary material. 
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Discussion  
 

Assembly comparison 

New assembly improvements  

 
In this thesis we clearly demonstrate that the new genome assembly can significantly improve imputation 
accuracy, particularly in genomic regions where the duplicate similarity is high (Figures 5 and 6 in results section). 
Much of this improvement is likely a consequence of the assembly contiguity that can be achieved through long 
read sequencing technologies. The new salmon reference genome is made up by 90 times fewer contigs (4,000) 
than the old assembly (368,060); this discrepancy is expected to largely affect the error rate of the scaffolding 
process when combining contigs to whole chromosome sequences (Sedlazeck et al., 2018). In line with this, we 
found that repositioning of SNPs between duplicated chromosome regions with high similarity, resulted in very 
large accuracy increase (Figure 6 in results section). These findings make apparent that the new genome 
assembly managed to accurately locate the misassembled complex genomic regions and correctly assign them 
to their genuine mapping position, thus enhancing resolution and precision.  

Interestingly, improvement in the new genome assembly was not as drastic for markers rearranged within the 
same chromosome. Average imputation accuracy of such markers only slightly improved in the new genome 
assembly (r2=0.853 in new versus r2=0.847 in the old genome assembly). Majority of these markers (~95%) 
typically belonged to low similarity duplicate regions (AORe) (Lien et al., 2016; Robertson et al., 2017). The 
sequence content of such regions is more distinct, making AORe regions easier to assemble and order into 
chromosome sequences. We therefore conclude that the imputation improvements seen in the new assembly is 
mostly due to genomic sequences that have been misplaced within duplicate chromosome regions in the old 
assembly.  

 

Genomic regions of poor imputation accuracy in the new assembly 

 
While mean imputation performance increased in the new assembly, we also identified genomic regions that had 
lower imputation accuracy compared to the old genome assembly (see chromosomes Ssa11, Ssa17 and Ssa18 
in Figure 5 of results section). Such regions coincide with high duplicate sequence similarity, also shown in 
Figure 5 of results section. There are three likely reasons as to why the new genome assembly performed worse 
than the old version in these genomic segments.  

Firstly, the genomic rearrangement that occurred in the new assembly heavily influenced the regions of high 
duplicate similarity by moving erroneously positioned markers between as well as within chromosomes (Figure 
6 in results section). The rearrangement impaired SNP-coverage for these regions, observed in Figure 7 of 
results section. Genotyping density plays a crucial role in imputation (Antolin et al., 2017; Kijas et al., 2017; Shi 
et al., 2018) and for that reason fluctuations in local SNP coverage could be the explanation behind the accuracy 
drops that we observe in regions of higher sequence similarity. The decrease in number of markers residing 
within genomic regions of higher complexity, indicates a certain weakness of currently available SNP genotyping 
panels to cater to certain features of the new genome assembly with high precision. Such issues, related to 
marker density and distribution, need to be addressed and accounted for in future design and production of 
genotyping panels.  

Secondly, LORe regions contain many large structural variants known to segregate in Norwegian Atlantic 
salmon. One possible explanation therefore is that the reference population used in this study was segregating 
for alternative structural variant haplotypes with high allele frequencies, potentially interfering with imputation 
accuracy. Accuracy of genotype inference depends on the correct estimation of haplotype frequencies (S. R. 
Browning & Browning, 2011). Most commercial genotyping panels however, assess structural variation 
positionally rather than in the form of long genomic segments (Rafter et al., 2020). Therefore, occurrence of large 
variation elements could disturb systematically observed haplotypes within populations, ultimately impacting 
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imputation performance. Although structural variants overlapped regions of decreased imputation accuracy and 
high genomic similarity, their occurrence was not restricted to low-accuracy regions and thus they could not 
prove indicative of imputation performance in our analysis.  

Finally, it is also possible that these few genomic regions that performed worse in the new assembly represent 
assembly errors that were not present in the old assembly. Such problems could relate to low sequence 
coverage, an issue faced by long-read sequencing, or possible setbacks of the medians used during the 
scaffolding process (Sedlazeck et al., 2018).  

Under such considerations, assessment of true impact of the SV elements overlapping our study findings is 
considered inconclusive. Although earlier studies have explored the impact of structural variation in aquaculture 
species (Bertolotti et al., 2020; Liu et al., 2021), the divergence of structural variation between farmed and wild 
salmon and the consequent effect of augmented or exclusive presence of SV elements in farmed cohorts has 
not been thoroughly examined or fully understood yet. As a result there is a lack of databases listing SV elements 
specifically segregating within aquaculture strains such as the one used in this study. At the same time, the need 
for recognition of variation elements using genotyping arrays and construction of SV databases, as well as the 
interest in the potentials of variation-aware (graph) reference genomes (Crysnanto & Pausch, 2020) becomes 
more apparent. As linear genome references provide the foundations upon which more complex structures are 
built, the refinement and improvements brought by the new salmon genome assembly constitute a big step 
forward.  

 

Imputation software comparison 

The use of pedigree and imputation accuracy 
 
Our first goal was to compare the performance of two routinely used imputation software in an experimental 
design where only immediate relatives were available (90 parents, 195 offspring). Our results show that 
Beagle yielded higher average imputation accuracy compared to FImpute (r2 > 0.84 against r2= ~0.83, 
respectively), even though FImpute was provided with a pedigree and Beagle does not exploit relationship 
information (see Table 1 in  results section).  

Earlier studies have shown that the use of pedigree information improves imputation accuracy in analyses 
assessing close relatives (Gualdron Duarte et al., 2013; Huang et al., 2012; Sargolzaei et al., 2014). Our 
findings, although using similarly high relationship levels, did not yield as high imputation accuracy as the 
mentioned studies. This could be attributed to our sample size and composition. Contrary to the mentioned 
studies, where further ancestry was included in the reference population, our study had available only a 
single generation of individuals (parents). Intuitively, the difference in impact of including pedigree 
information between our study and previously published findings could be explained by the limited 
information depth of the pedigree that we used. In addition, our sample size of individuals was considerably 
smaller (a total 285 fish), which could have also played an important role in our fairly low accuracy outcome, 
as imputation accuracy increases with population size. Similar observations to ours using small populations 
of immediate relatives only, have been made elsewhere (Tsai et al., 2017). Comparison of our findings with 
studies that use a wider range of relationships between individuals, highlights the importance of exploiting 
larger, multigenerational reference populations and accounting for their respective relationships in the 
pedigree.  

Although inclusion of pedigree information can significantly increase imputation accuracy, pedigree 
information availability and most importantly reliability often constitutes a problem, especially in aquaculture 
(Hayes et al., 2012; Vandeputte & Haffray, 2014). Our imputation software comparison results indicate that 
given the sample size and relatedness restrains, population-based methods can prove equally if not more 
capable of imputing close relatives, allowing for pedigree information to be omitted. In our study, Beagle’s 
higher overall imputation accuracy could be attributed to our target sample’s composition as we included 
offspring with either one or both parents genotyped in the reference population. While family based methods 
and pedigree information can accurately define the haplotypes for closely related individuals, assessing 
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individuals between populations as unrelated, determined more accurately the haplotype phase for the 
offspring with ungenotyped parents. Arguably, FImpute provides the ability of inferring ungenotyped parents 
provided that a certain number of their offspring are included in sample. However, this option cannot be 
exploited unless the parent is known -though ungenotyped. Our findings thus highlight the advantage and 
potential in incorporating probabilistic approaches into family-based imputation methods when populations 
with high family structure are assessed (Antolin et al., 2017).  

Conversely, in genomic regions where both software show substantial decrease in imputation accuracy 
(mean accuracy r2 < 0.50), FImpute performed better than Beagle. Family-based imputation approaches 
assume the existence of relationships between populations and thus try to define long shared haplotype 
segments between related individuals. On the other hand, probabilistic approaches focus on identification 
of short haplotype segments that segregate between populations under the assumption of unrelatedness 
(Antolin et al., 2017). In our analysis, the low accuracy regions were also characterized by very low SNP 
marker density. It is therefore possible that due to the haplotype-assessment differences of the two 
approaches (described in introduction section “Imputation approaches”), combined with use of a partially 
complete pedigree, FImpute was able to assess long haplotype segments and better infer the genotypes in 
regions of sparse marker density and consequently decreased LD between SNPs.  

 

Computational cost and efficiency 

 

High accuracy is the ultimate goal of genotype imputation, however choosing the most appropriate 
imputation strategy for an analysis requires further parameters to be considered. Due to the population size 
and volume of data handled in aquaculture, computational efficiency is highly sought after. Earlier studies 
in livestock have associated higher computational burden with population-based imputation methods 
(Antolin et al., 2017; Piccoli et al., 2014; Sargolzaei et al., 2014). In line with this, in our study FImpute was 
significantly faster than Beagle, reducing the computational time required for the same analysis by 50% (4 
against 8 minutes, respectively, see Table 1 in results section). However, described in methods section 
“Evaluation of SNP genotype imputation tools for genome assembly comparisons”, we used the latest 
versions of both imputation algorithm, employing parallelized processing and utilizing several (8) CPU cores. 
In addition, the sample that we used consisted of very few individuals (285 fish in total). In that respect, our 
analyses required little processing time overall, allowing us to use Beagle in all genotype imputation 
analyses for this thesis.  

Although quicker in computation, FImpute required software specific formatting of the input information 
(described in methods section “Evaluation of SNP genotype imputation tools”). This requirement made the 
imputation analysis time consuming, user-dependent and thus error-prone. On the contrary, Beagle accepts 
more conventional file formats (Variant Call Format, .vcf), allowing the use of output from routinely used 
genomic analysis tools such as PLINK (used in this study) to be directly implemented into the imputation 
analysis pipeline. In this manner Beagle, although computationally costly, proves less user-dependent and 
thus more efficient. Imputation software is constantly improving in power and efficiency, however one needs 
to take into account the strengths and weaknesses of different imputation methods relative to the analysis 
design; population size, composition and pedigree availability are some points of consideration. 

 

Impact of reference population size, SNP density and quality filtering on imputation 

accuracy 

 

As the last objective of this thesis, we assessed the impact of (i) population size, (ii) target genotyping 
density and (iii) quality filtering on imputation accuracy (Figures 1, 8 ,9 and ,Tables 1, 4 and 5 in results 
section).  
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We show that using a reference population of 1,293 fish yielded significantly higher imputation accuracy 
than the experimental design where 285 individuals with an almost complete pedigree were only included 
(r2=~0.93 against r2=~0.85 seen in tables 1 and 4  and Figures 1 and 8 in results section, respectively). 
Imputation accuracy in our analysis was evaluated using squared correlation (r2), a metric that rewards 
correct inference of a minor allele compared to the common allele (Calus et al., 2014). In that respect, by 
increasing the population size, rare alleles become more frequently observed and thus more accurately 
defined (Tsai et al., 2017). In addition, by including more individuals, segregation of non-IBD shared 
haplotype segments can be better determined, further contributing to better imputation performance (Antolin 
et al., 2017). This is especially the case for population-based software, such as Beagle in our study, that do 
not account for relationships between populations and thus naturally benefit from larger population sizes 
(B. L. Browning et al., 2018). Lastly, although the reference and target groups of the CV analysis consisted 
of randomly sampled individuals, the cohort we used in our study originated from a single breeding nucleus. 
In breeding schemes random mating is restricted, meaning that our sample included, to some extent, 
multigenerational family structures. Discussed elsewhere (Gualdron Duarte et al., 2013; Tsai et al., 2017), 
the existence of multiple generations within the reference population can increase imputation accuracy by 
improving the reference haplotype estimation through shared allele segregation between related individuals. 

Previous studies have shown that increasing SNP density improves imputation accuracy (Huang et al., 
2012; Tsairidou et al., 2020) as higher genotyping densities can provide better SNP-coverage, reduce the 
number of missing genotypes and thus the possibility of erroneous haplotype inference (Bernardes et al., 
2019; Browning & Browning, 2011). Interestingly, our cross-validation experiment showed negligible 
genome wide accuracy differences yet large local genomic improvement (e.g. chromosomes Ssa03, Ssa17 
and  Ssa26 in Figure 8) in imputation accuracy when the target population genotyping density increased 
from 44,201 to 183,582 SNP markers. In addition, human imputation studies have observed that after 
reaching a certain genotyping coverage, the impact of increasing genotyping density begins to saturate (Shi 
et al., 2018). Our results, presented in  Figure 8 of results section as well as in Figure s5 of supplementary 
material, support the previous notion by indicating that cost-efficient genotyping strategies can be 
implemented through currently available SNP panels and yet yield considerably high imputation accuracy 
(r2= ~0.93, Table 4 in results section). Most importantly, differences in local imputation accuracy between 
the target genotyping panels we used, were observed in regions of low genotyping coverage and high 
genomic complexity. These findings underline certain weaknesses of currently available arrays and also 
highlight the importance and necessity of uniform SNP coverage across the genome, with particular 
emphasis given towards genomic regions of higher genomic complexity.  

Lastly, genotyping errors are an issue for imputation as erroneously called genotypes as well as  
mispositioned markers interfere with haplotype phasing and consequently impact imputation accuracy (S. 
R. Browning & Browning, 2011). This issue becomes more evident considering the genomic complexity of 
the Atlantic salmon genome since SNP marker annotation is additionally challenged by genomic regions of 
ancestral duplication (Houston et al., 2014). Further restriction of SNP marker and genotype quality in our 
analysis increased average imputation accuracy from 0.851 to 0.885 in the parents-offspring design (Table 
5 and figure 9 in results section). These results show that quality restriction constitutes and efficient way to 
significantly improve (p-value < 2.2e-16) imputation accuracy. On the other hand, despite applying more 
stringent quality restrictions and increasing accuracy, using only immediate relatives for analysis still yielded 
lower imputation accuracy compared to the CV analysis. This comparison further supports the notion that 
better imputation performance in our analyses is tightly associated to differences in populations’ size and 
composition. On the other hand, increasing quality restrains comes at the cost of discarding more, 
potentially valuable information. While genotypes with very low minor alleles frequencies and considerable 
deviation from the Hardy Weinberg equilibrium indicate putative genotyping errors, in certain cases they 
can be associated with causative genes of variation signals (Rafter et al., 2020). In this manner, although 
strict quality filtering can increase imputation accuracy, it is important to adjust the filtering restrains 
according to the analysis objectives and allow for certain amount of rare allele variants to be represented. 
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Table s1 Inter-chromosome re-arrangement and elongation details per chromosome number between the two assembly versions 

Chromosome  
number 

Markers 
migrated 

Markers 
introduced 

Length in old 
assembly (Mbp) 

Length in new  
assembly (Mbp) 

Length  
difference (Mbp) 

Ssa01 191 69 159.03 174.37 15.34 

Ssa02 526 145 72.92 94.07 21.15 

Ssa03 474 360 92.48 101.26 8.78 

Ssa04 133 421 82.39 90.08 7.69 

Ssa05 104 218 80.42 91.55 11.13 

Ssa06 356 476 87.04 96.03 8.99 

Ssa07 158 68 58.76 68.24 9.48 

Ssa08 414 122 26.41 28.55 2.14 

Ssa09 36 66 141.71 160.19 18.48 

Ssa10 83 19 116.11 125.77 9.66 

Ssa11 251 279 93.69 111.37 17.68 

Ssa12 91 326 91.88 101.58 9.7 

Ssa13 20 30 107.74 114.22 6.48 

Ssa14 66 25 93.87 101.85 7.98 

Ssa15 31 13 103.89 110.43 6.54 

Ssa16 226 168 87.75 96.31 8.56 

Ssa17 221 481 57.4 85.13 27.73 

Ssa18 51 132 70.69 84.03 13.34 

Ssa19 24 27 82.97 87.99 5.02 

Ssa20 27 36 86.78 96.71 9.93 

Ssa21 14 13 58.01 59.7 1.69 

Ssa22 11 4 63.42 63.77 0.35 

Ssa23 19 11 49.85 52.39 2.54 

Ssa24 9 11 48.51 48.99 0.48 

Ssa25 11 29 51.48 54.26 2.78 

Ssa26 257 254 47.88 55.88 8 

Ssa27 14 15 43.57 45.24 1.67 

Ssa28 3 1 39.59 41.43 1.84 

Ssa29 12 14 42.47 43.01 0.54 
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Table s2 Physical position details for 274,196 structural variation elements, identified in 4 wild Norwegian salmon 
individuals, categorized by variation type 

Element Number Min. length (bp) Max. length (bp) Average Length (bp) 

Duplications (DUP) 2,242 51 4,859,508 19,248 

Deletions (DEL) 146,355 51 4,842,359 844 

Insertions (INS) 124,285 50 16,804 360 

Inversions (INV) 1,314 51 4,396,921 24,421 

 

 

 

 

 

Figure s3 Composition of a dataset including for 274,196 structural variation elements, identified in 4 wild Norwegian 
salmon individuals, categorized by variation type.   
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